Computational homogenization based on a weak format of micro-periodicity for RVE-problems
Artikel i vetenskaplig tidskrift, 2011

Computational homogenization with a priori assumed scale separation is considered, whereby the macroscale stress is obtained via averaging on Representative Volume Elements (RVE:s). A novel variational formulation of the RVE-problem, based on the assumption of weak micro-periodicity of the displacement fluctuation field, is proposed. Notably, independent FE-discretization of boundary tractions (Lagrange multipliers) allows for a parameterized transition between the conventional "strong" periodicity and Neumann boundary conditions. In this paper, the standard situation of macroscale strain control is considered. Numerical results demonstrate the convergence properties with respect to (1) the approximation of displacement and tractions and (2) the RVE-size for random realizations of the microstructure.

microstructures

plasticity

variational formulation

Elasticity

simulation

contact

Homogenization

macro

Mixed variational formulation

algorithm

representative volume

FEM

Författare

Fredrik Larsson

Chalmers, Tillämpad mekanik, Material- och beräkningsmekanik

Kenneth Runesson

Chalmers, Tillämpad mekanik, Material- och beräkningsmekanik

S. Saroukhani

Dynamik

R. Vafadari

Chalmers, Tillämpad mekanik, Förbränning och framdrivningssystem

Computer Methods in Applied Mechanics and Engineering

0045-7825 (ISSN)

Vol. 200 1-4 11-26

Ämneskategorier

Maskinteknik

DOI

10.1016/j.cma.2010.06.023

Mer information

Skapat

2017-10-08