A New Proof of an Old Result by Pickands
Artikel i vetenskaplig tidskrift, 2010

Let {xi(t)}(t is an element of[0,h]) be a stationary Gaussian process with covariance function r such that r(t) = 1 - C vertical bar t vertical bar(alpha) + o(vertical bar t vertical bar(alpha)) as t -> 0. We give a new and direct proof of a result originally obtained by Pickands, on the asymptotic behaviour as u -> infinity of the probability P{sup(t is an element of vertical bar 0,h vertical bar) xi(t) > u} that the process xi exceeds the level u. As a by-product, we obtain a new expression for Pickands constant H alpha

asymptotic properties

stationary-processes

Stationary Gaussian process

gaussian process

tails

Pickands constant

extremes

Författare

Patrik Albin

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematisk statistik

H. Choi

Electronic Communications in Probability

1083589x (eISSN)

Vol. 15 339-345

Ämneskategorier

Sannolikhetsteori och statistik

DOI

10.1214/ECP.v15-1566

Mer information

Skapat

2017-10-08