Deriving time-dependent diffusion and relaxation rate in porous systems using eigenfunctions of the Laplace operator
Artikel i vetenskaplig tidskrift, 2009

Porous systems are investigated using eigendecomposition of the Laplace matrix. Three parameters; tor- tuosity, surface-to-pore volume ratio and relaxation rate are derived from the eigenvalue spectrum of the Laplace matrix and connected to the parameters in the Padé approximation, an expression often used to describe the time-dependent diffusion coefficient in porous systems. The Padé length is identified for sys- tems with large pore to connector volume ratio. The results are compared with simulations.

Författare

Matias Nordin

Chalmers, Kemi- och bioteknik, Teknisk ytkemi

SuMo Biomaterials

Martin Nilsson Jacobi

Chalmers, Energi och miljö, Fysisk resursteori

Magnus Nydén

Chalmers, Kemi- och bioteknik, Teknisk ytkemi

SuMo Biomaterials

Journal of Magnetic Resonance

1090-7807 (ISSN)

Vol. 201 2 205-211

Fundament

Grundläggande vetenskaper

Ämneskategorier

Den kondenserade materiens fysik

DOI

10.1016/j.jmr.2009.09.010

Mer information

Skapat

2017-10-08