Proximity effect and electron transport in oxide hybrid heterostructures with superconducting/magnetic interfaces
Artikel i vetenskaplig tidskrift, 2011

We report on electron transport in oxide heterostructures with superconducting/magnetic (S/M) thin film interfaces. The investigated hybrid mesa-heterostructures consist of a cuprate superconductor, a nonsuperconducting cuprate (antiferromagnetic) or manganite (ferromagnetic) interlayer with thickness d(M) = 5-50 nm and a conventional superconductor (Nb). The superconducting critical current (I-C) with a critical current density j(c) = 10(3) A cm(-2) (for d(M) = 10 nm) and a characteristic voltage ICRN = 100-200 mu V (RN is normal resistance) are observed at liquid helium temperature for a CaXSr1-XCuO2 antiferromagnetic cuprate interlayer with a thickness of d(M) = 10-50 nm. The superconducting current-phase relation of heterostructures deviates from the regular sine type, demonstrating a second harmonic component. These hybrid heterostructures with S/M interfaces show unusually high sensitivity to external magnetic fields. When substituting the cuprate interlayer by a manganite film, no critical current was observed although the manganite interlayer was made several times thinner (down to d(M) <= 5 nm).

ferromagnet

josephson-junction

parent

d-wave superconductors

current-phase relation

metal interfaces

ground-state

conductivity

layer

thin-films

Författare

Gennady Ovsyannikov

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

K. Y. Constantinian

National Research University of Electronic Technology (MIET)

Y. V. Kislinski

National Research University of Electronic Technology (MIET)

A. V. Shadrin

National Research University of Electronic Technology (MIET)

A. V. Zaǐtsev

National Research University of Electronic Technology (MIET)

A. M. Petrzhik

National Research University of Electronic Technology (MIET)

V. V. Demidov

National Research University of Electronic Technology (MIET)

I. V. Borisenko

National Research University of Electronic Technology (MIET)

Alexei Kalaboukhov

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Dag Winkler

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Superconductor Science and Technology

0953-2048 (ISSN) 1361-6668 (eISSN)

Vol. 24 5 Art. no. 055012-

Styrkeområden

Nanovetenskap och nanoteknik

Ämneskategorier

Den kondenserade materiens fysik

DOI

10.1088/0953-2048/24/5/055012

Mer information

Skapat

2017-10-08