Evaluation of Optimized 3-step Global Reaction Mechanism for CFD Simulations on Sandia Flame D
Paper i proceeding, 2011
The aim of this paper is to evaluate a new optimized 3-step global reaction mechanism (opt) [1] for a methane-air mixture for industry purpose. The global reaction mechanism consists of three reactions corresponding to the fuel oxidation into CO and H2O, and the CO–CO2 equilibrium reaction. Correction functions that are dependent on the local equivalence ratio are introduced into the global mechanism. The optimized 3-step global reaction scheme is adapted into the Computational Fluid Dynamics (CFD) analysis of a partially-premixed piloted methane jet flame. The burner consists of a central nozzle (for premixed fuel/air), surrounded by a premixed pilot flame, and an annular co-flow stream. Both steady-state RANS (Reynolds Averaged Navier Stokes) and time-averaged hybrid URANS/LES (Unsteady RANS/Large Eddy Simulation) results have been computed and compared with experimental results obtained from the Sydney burner at Sandia National Laboratories, Sandia Flame D [2]. The CFD results with the optimized 3-step global reaction mechanism show reasonable agreement with the experimental data based on emission, velocity and temperature profiles, while the 2-step Westbrook Dryer (WD2) [3] global reaction mechanism shows poor agreement with the emission profiles. ©2011 American Institute of Physics
CFD
global mechanism
PSR
WD2
methane-air mixture
combustion