Optimal parameterization of posterior densities using homotopy
Paper i proceeding, 2011

In filtering algorithms, it is often desirable that the prior and posterior densities share a common density parameterization. This can rarely be done exactly. Instead it is necessary to seek a density from the same family as the prior which closely approximates the true posterior. We extend a method for computing the optimal parameter values for representing the posterior within a given parameterization. This is achieved by minimizing the deviation between the parameterized density and a homotopy that deforms the prior density into the posterior density. We derive novel results both for the general case, and for specific choices of measures of deviation. This includes approximate solution methods, that prove useful when we demonstrate how the method can be used with common density parameterizations. For an example with a non-linear measurement model, the method is shown to be more accurate than the Extended, Unscented and Cubature Kalman filters.

Författare

Jonas Hagmar

Lennart Svensson

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik

Mark Morelande

Mats Jirstrand

Chalmers, Kemi- och bioteknik, Livsvetenskaper

14th International Conference on Information Fusion, Fusion 2011; Chicago, IL; 5 July 2011 through 8 July 2011


978-145770267-9 (ISBN)

Styrkeområden

Informations- och kommunikationsteknik

Transport

Ämneskategorier

Beräkningsmatematik

ISBN

978-145770267-9

Mer information

Skapat

2017-10-08