Ion-mediated changes of supported lipid bilayers and their coupling to the substrate. A case of bilayer slip?
Artikel i vetenskaplig tidskrift, 2011
Ion-mediated (Ca(2+)) changes in viscoelastic, structural and optical properties of negatively charged solid supported lipid bilayers (SLBs) on SiO(2) surfaces were studied by means of quartz crystal microbalance with dissipation (QCM-D) monitoring and optical reflectometry. Despite the sensitivity of QCM-D to viscoeleastic/structural variations, it has not often been used to probe such changes for SLBs. SLBs were prepared from binary phospholipid mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC, neutral) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG, negatively charged) on SiO(2) sensor surfaces in a Ca(2+)-containing buffer. Interestingly, for bilayers containing POPG fractions above 35%, large QCM-D dissipation shifts occurred, when Ca(2+) was removed from buffer in contact with the SLB (while maintaining 100 mM NaCl). The accompanying frequency changes were small. These Ca(2+) mediated QCM-D responses are reversible, and a signal for considerable changes in the viscoelastic and structural properties of the SLB. Variation of Ca(2+)-concentration revealed a threshold concentration of around 0.4 mM for the changes in the SLB to occur. Below this value, at >35% POPG concentration in the SLB, the SLB appears to become more weakly attached to the SiO(2) substrate, which is partly attributed to a weakening of the POPG-substrate interaction in the absence of Ca(2+). A consequence of this is an oscillation-amplitude dependent dissipation, which we attribute to slip of the bilayer at higher oscillation amplitudes. Complementary experiments using a combined QCM-D/reflectometry instrument showed that the Ca(2+)-induced changes in the viscoelastic/structural properties of the SLB are accompanied by changes in the optical properties. We discuss different scenarios to explain the observed reversible effect of Ca(2+)-ions on the dissipative and optical properties of the mixed SLBs. Based on our results we propose the observed phenomenon to be a combination of geometric changes, internal structural changes, changes in the interfacial water layer, and a slip mechanism, i.e. friction between the SLB and the substrate.
v513
reflectometry
adsorption
laughlin a
v39
1978
1986
divalent-cations
p338
quartz-crystal microbalance
qcm-d
atomic-force microscopy
unilamellar vesicles
p119
membranes
interference-contrast microscopy
vesicle
muralis w
phospholipid-bilayers