Towards a computational interpretation of parametricity
Preprint, 2011

Reynolds' abstraction theorem has recently been extended to lambda-calculi with dependent types. In this paper, we show how this theorem can be internalized. More precisely, we describe an extension of the Calculus of Constructions with a special parametricity rule (with computational content), and prove fundamental properties such as Church-Rosser's and strong normalization. The instances of the abstraction theorem can be both expressed and proved in the calculus itself.

type-theory

dependent types

lambda-calculi

parametricity

Författare

Jean-Philippe Bernardy

Chalmers, Data- och informationsteknik, Programvaruteknik

Guilhem Moulin

Chalmers, Data- och informationsteknik, Datavetenskap

Fundament

Grundläggande vetenskaper

Ämneskategorier

Datavetenskap (datalogi)

Mer information

Skapat

2017-10-07