The geometry of pure spinor space
Artikel i vetenskaplig tidskrift, 2012

We investigate the complex geometry of D=10 pure spinor space. The Kähler structure and the corresponding metric giving rise to the desired Calabi-Yau property are determined, and an explicit covariant expression for the Laplacian is given. The metric is not that of a cone obtained by embedding pure spinor space in a flat space of unconstrained spinors. Some directions for future studies, concerning regularisation and generalisation to eleven dimensions, are briefly discussed.

Extended Supersymmetry

Differential and Algebraic Geometry

Författare

Martin Cederwall

Chalmers, Teknisk fysik, Matematisk fysik

Journal of High Energy Physics

1126-6708 (ISSN) 1029-8479 (eISSN)

Vol. 2012 1 Article Number: 150-

Ämneskategorier

Matematik

Fysik

Fundament

Grundläggande vetenskaper

DOI

10.1007/JHEP01(2012)150