On Weak Solutions to the Linear Boltzmann Equation with Inelastic Coulomb Collisions
Paper i proceeding, 2011

This paper considers the time- and space-dependent linear Boltzmann equation with general boundary conditions in the case of inelastic (granular) collisions. First, in the (angular) cut-off case, mild L(1)-solutions are constructed as limits of the iterate functions and botuadedness of higher velocity moments are discussed in the case of inverse power collisions forces. Then the problem of the weak solutions, as weak limit of a sequence of mild solutions, is studied for a bounded body, in the case of very soft interactions (including the Coulomb case). Furthermore, strong convergence of weak solutions to the equilibrium, when time goes to infinity, is discussed, using a generalized H-theorem, together with a translation continuity property.

granular collisions

Coulomb

interactions

infinite-range forces

linear Boltzmann equation

weak solutions

Författare

Rolf Pettersson

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

AIP Conference Proceedings

0094-243X (ISSN) 1551-7616 (eISSN)

Vol. 1333 PART 1 111-116
978-0-7354-0889-0 (ISBN)

Ämneskategorier

Beräkningsmatematik

DOI

10.1063/1.3562634

ISBN

978-0-7354-0889-0

Mer information

Skapat

2017-10-07