Bounds for maximal functions associated with rotational invariant measures in high dimensions
Artikel i vetenskaplig tidskrift, 2014
ABSTRACT. In recent articles, it was proved that when mu is a finite, radial measure in
Rn with a bounded, radially decreasing density, the Lp(mu) norm of the associated maximal
operator grows to infinity with the dimension for a small range of values of p near 1.
We prove that when mu is Lebesgue measure restricted to the unit ball and p < 2, the Lp
operator norms of the maximal operator are unbounded in dimension, even when the action
is restricted to radially decreasing functions. In spite of this, this maximal operator admits
dimension-free Lp bounds for every p > 2, when restricted to radially decreasing functions.
On the other hand, when mu is the Gaussian measure, the Lp operator norms of the maximal
operator grow to infinity with the dimension for any finite p > 1, even in the subspace of
radially decreasing functions.
Maximal functions
Radial measures
42B25
Dimension free estimates