Results on Binary Linear Codes With Minimum Distance 8 and 10
Artikel i vetenskaplig tidskrift, 2011

All linear binary codes with minimum distance 8 and codimension up to 14 and all codes with minimum distance 10 and codimension up to 18 are classified. Nonexistence of codes with parameters [33, 18, 8] and [33, 14, 10] is proved. This leads to 8 new exact bounds for binary linear codes. Primarily two algorithms considering the dual codes are used, namely extension of dual codes with a proper coordinate, and a fast algorithm for finding a maximum clique in a graph, which is modified to find a maximum set of vectors with the right dependency structure.

optimal codes

classification of codes

linear codes

length

Algorithms

Författare

I. G. Bouyukliev

Bulgarian Academy of Sciences

Erik Lorentzen

Göteborgs universitet

Chalmers, Matematiska vetenskaper, matematisk statistik

IEEE Transactions on Information Theory

0018-9448 (ISSN)

Vol. 57 6089-6093

Ämneskategorier

Data- och informationsvetenskap

DOI

10.1109/tit.2011.2162264