Oxygen Dissociation by Concerted Action of Di-Iron Centers in Metal
Artikel i vetenskaplig tidskrift, 2011

The high chemical reactivity of unsaturated metal sites is a key factor for the development of novel devices with applications in sensor engineering and catalysis. It is also central in the research for sustainable energy concepts, e.g., the efficient production and conversion of chemical fuels. Here, we study the process of oxygen dissociation by a surface-supported metal organic network that displays close structural and functional analogies with the cofactors of non-heme enzymes. We synthesize a two-dimensional array of chemically active di-iron sites on a Cu(001) surface wheremolecular oxygen readily dissociates at room temperature. We provide an atomic-level structural and electronic characterization before and after reaction by combining scanning tunneling microscopy, X-ray absorption spectroscopy, and density functional theory. The latter identifies a novel mechanism for O2 dissociation controlled by the cooperative catalytic action of two Fe2+ ions. The high structural flexibility of the organic ligands, the mobility of the metal centers, and the hydrogen bonding formation are shown to be essential for the functionality of these active centers allowing to mimick biologically relevant reactions in a confined environment.

Författare

Stefano Fabris

Sebastian Stepanow

Nian Lin

Pietro Gambardella

Alexander Dmitriev

Chalmers, Teknisk fysik, Bionanofotonik

Jan Honolka

Stefano Baroni

Klaus Kern

Nano Letters

1530-6984 (ISSN) 1530-6992 (eISSN)

Vol. 11 5414-

Styrkeområden

Nanovetenskap och nanoteknik

Materialvetenskap

Ämneskategorier (SSIF 2011)

Fysikalisk kemi

Övrig annan teknik

Den kondenserade materiens fysik

Fundament

Grundläggande vetenskaper

Mer information

Skapat

2017-10-07