A Computational Interpretation of Parametricity
Paper i proceeding, 2012

Reynolds' abstraction theorem has recently been extended to lambda-calculi with dependent types. In this paper, we show how this theorem can be internalized. More precisely, we describe an extension of Pure Type Systems with a special parametricity rule (with computational content), and prove fundamental properties such as Church-Rosser's and strong normalization. All instances of the abstraction theorem can be both expressed and proved in the calculus itself. Moreover, one can apply parametricity to the parametricity rule: parametricity is itself parametric.

dependent types

parametricity

lambda-calculi

type-theory

Författare

Jean-Philippe Bernardy

Chalmers, Data- och informationsteknik, Programvaruteknik

Guilhem Moulin

Chalmers, Data- och informationsteknik, Datavetenskap

IEEE Symposium on Logic in Computer Science. 27th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), Dubrovnik, Croatia, June 25-28, 2012

1043-6871 (ISSN)

135-144
978-0-7695-4769-5 (ISBN)

Fundament

Grundläggande vetenskaper

Ämneskategorier

Datavetenskap (datalogi)

DOI

10.1109/LICS.2012.25

ISBN

978-0-7695-4769-5

Mer information

Skapat

2017-10-07