Sparse solutions of sparse linear systems: Fixed-parameter tractability and an application of complex group testing
Paper i proceeding, 2011

A vector with at most k nonzeros is called k-sparse. We show that enumerating the support vectors of k-sparse solutions to a system Ax=b of r-sparse linear equations (i.e., where the rows of A are r-sparse) is fixed-parameter tractable (FPT) in the combined parameter r,k. For r=2 the problem is simple. For 0,1-matrices A we can also compute a kernel. For systems of linear inequalities we get an FPT result in the combined parameter d,k, where d is the total number of minimal solutions. This is achieved by interpreting the problem as a case of group testing in the complex model. The problems stem from the reconstruction of chemical mixtures by observable reaction products.

enumeration

parameterized algorithm

linear system

hitting set

group testing

problem kernel

sparse vector

Författare

Peter Damaschke

Chalmers, Data- och informationsteknik, Datavetenskap

Lecture Notes in Computer Science

0302-9743 (ISSN)

Vol. 7112 94-105

Fundament

Grundläggande vetenskaper

Styrkeområden

Livsvetenskaper och teknik

Ämneskategorier

Datavetenskap (datalogi)

DOI

10.1007/978-3-642-28050-4_8

ISBN

978-364228049-8