A note on a paper of Harris concerning the asymptotic approximation to the eigenvalues of -y''+qy=\lambda y, with boundary conditions of general form
Artikel i vetenskaplig tidskrift, 2012

In this paper, we derive an asymptotic approximation to the eigenvalues of the linear differential equation $$ -y''(x)+q(x)y(x)=\lambda y(x),\hskip 1.4 true cm x\in (a,b) $$ with boundary conditions of general form, when $q$ is a measurable function which has a singularity in $(a,b)$ and which is integrable on subsets of $(a,b)$ which exclude the singularity.

boundary condition

Sturm–Liouville equation

Prufer transformation

Författare

Mahdi Hormozi

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Boundary Value Problems

1687-2762 (ISSN) 1687-2770 (eISSN)

Article Number: 40- 40

Ämneskategorier

Matematisk analys

DOI

10.1186/1687-2770-2012-40