Effect of the consumption of a fruit and vegetable soup with high in vitro carotenoid accessibility on serum carotenoid concentrations and markers of oxidative stress in young men
Artikel i vetenskaplig tidskrift, 2012
Aim
To evaluate the effect of the daily intake of a fruit & vegetable soup with high in vitro bioaccessibility of carotenoids on β-carotene and lycopene serum concentrations.
Methods
Fourteen healthy young men (24 ± 1 years) received 300 mL/day of a carrot, tomato, and broccoli soup, containing 3.9 mg β-carotene and 4 mg lycopene, for 4 weeks followed by a 4-week washout period. The serum carotenoid response and oxidative markers were analyzed after 3 and 4 weeks of soup consumption and after a 4-week washout.
Results
The in vitro bioaccessibility of β-carotene and lycopene was 55 and 43%, respectively, in the soup. Serum β-carotene concentrations were significantly higher than baseline (0.33 ± 0.05 μmol/L) after 3 weeks (0.69 ± 0.06 μmol/L) and 4 weeks (0.78 ± 0.10 μmol/L) of soup consumption (P < 0.001). Serum lycopene was also significantly higher compared with baseline levels (0.26 ± 0.08–0.56 ± 0.04 μmol/L and 0.60 ± 0.04 μmol/L, after 3 and 4 weeks, respectively) (P < 0.001). Although the highest concentration of both carotenoids was found after 4 weeks, the levels were not statistically different from the levels at 3 weeks. A 4-week washout significantly decreased serum carotenoid concentrations, although only β-carotene returned to baseline. Glutathione peroxidase (GPx) increased significantly after soup supplementation compared with baseline, while superoxide dismutase was significantly lower only after 3 weeks. Glutathione reductase, lipid, protein, and DNA oxidative markers remained unchanged.
Conclusions
The soup contributed to increasing the concentration of each carotenoid by more than 100% after 3 and 4 weeks of consumption, the maximum increase being observed after 4 weeks. Oxidative markers did not show any variation except for GPx. Serum lycopene half-life was longer than that of β-carotene, which may be important for studies evaluating both carotenoids.
oxidative stress
Carotenoid bioavailability
human