Bounds on M/R for charged objects with positive cosmological constant
Artikel i vetenskaplig tidskrift, 2012

We consider charged spherically symmetric static solutions of the Einstein-Maxwell equations with a positive cosmological constant Lambda. If r denotes the area radius, m(g) and q the gravitational mass and charge of a sphere with area radius r respectively, we find that for any solution which satisfies the condition p + 2p(perpendicular to) +/- <= rho, where p >= 0 and p(perpendicular to) are the radial and tangential pressures respectively, rho >= 0 is the energy density, and for which 0 <= q(2)/r(2) + Lambda r(2) <= 1, the inequality m(g)/r <= 2/9 + q(2)/3r(2)-Lambda r(2)/3 + 2/9 root 1 + 3q(2)/r(2) + 3 Lambda r(2) holds. We also investigate the issue of sharpness, and we showthat the inequality is sharp in a few cases but generally this question is open.

general-relativistic objects

Författare

Håkan Andreasson

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

C. G. Bohmer

University College London (UCL)

A. Mussa

University College London (UCL)

Classical and Quantum Gravity

0264-9381 (ISSN)

Vol. 29 9

Ämneskategorier

Astronomi, astrofysik och kosmologi

DOI

10.1088/0264-9381/29/9/095012

Mer information

Senast uppdaterat

2018-02-28