High cell-density cultivation in batch mode for plasmid DNA production by a metabolically engineered E. coli strain with minimized overflow metabolism
Artikel i vetenskaplig tidskrift, 2011

Progress on plasmid-based (pDNA) vaccines requires simpler and efficient cultivation techniques for their production. A prevalent problem in the cultivation of Escherichia coli (the main host for pDNA vaccines production) is the aerobic production of acetate. In this work, a metabolically engineered Escherichia coli strain with strongly reduced acetate formation was tested for the production of a plasmid vaccine at high cell-densities. The wild type (W3110) and engineered (VH33) strains were cultivated in batch mode using 100g/L of initial glucose concentration. This elevated amount of glucose allowed attaining high cell-densities of strain VH33 without external substrate feeding, simplifying the cultivation process. While W3110 produced 17mg/L of pDNA and 5.3g/L of acetate, VH33 reached 40mg/L of pDNA and only 2g/L of acetate. While the plasmid supercoiling degree progressively decreased in W3110 cultivations, it remained nearly constant for VH33. These results show the successful application of cell engineering concepts for improving DNA vaccine production processes.


High cell-density


Metabolic engineering

pDNA vaccines



Luis Caspeta-Guadarrama

Chalmers, Kemi- och bioteknik

Biochemical Engineering Journal

1369-703X (ISSN)

Vol. 56 165-171


Annan industriell bioteknik