Nozzle throat optimization for supersonic jet noise reduction
Konferensbidrag (offentliggjort, men ej förlagsutgivet), 2012

Noise from engines that operate at supersonic conditions, especially high performance military aircraft, often utilize a converging-diverging nozzle with variable area control. This design usually includes a sharp nozzle throat which creates internal shock formation. Turbulent structure interaction with these shocks results in additional noise components other than turbulent mixing noise to be introduced to the jet noise spectrum. The present study investigates how weakening the internal shocks affects the flow and acoustics of a Mach 1.6 jet. RANS simulations were used to minimize internal shock formation and optimize the flow contours of the converging portion and throat of a C-D nozzle. A response surface methodology was used to evaluate 3000 possible designs using the RANS results as model inputs. An experimental investigation was conducted with a splined nozzle design that is virtually free of internal shocks. The flow field was measured using PIV for comparison with RANS and LES. Mean velocity and turbulence was captured well by the computations for the sharp throat and splined nozzles. Although the throat shocks were nearly eliminated, the overall shock strength was relatively unchanged. Far-field acoustic results showed little difference at thrust matched conditions since the overall shock strength was unchanged. The nozzle performance is greatly improved through throat optimization, providing equivalent thrust with 4% less pressure with no acoustic penalty.

Författare

Bernhard Gustafsson

Daniel Cuppoletti

Ephraim Gutmark

Haukur Hafsteinsson

Chalmers, Tillämpad mekanik, Strömningslära

Lars-Erik Eriksson

Chalmers, Tillämpad mekanik, Strömningslära

Erik Prisell

50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, 9-12 January 2012

Infrastruktur

C3SE (Chalmers Centre for Computational Science and Engineering)

Ämneskategorier

Strömningsmekanik och akustik

Mer information

Skapat

2017-10-07