Multi-line detection of O2 toward rho Ophiuchi A
Artikel i vetenskaplig tidskrift, 2012

Context. Models of pure gas-phase chemistry in well-shielded regions of molecular clouds predict relatively high levels of molecular oxygen, O-2, and water, H2O. These high abundances imply high cooling rates, leading to relatively short timescales for the evolution of gravitationally unstable dense cores, forming stars and planets. Contrary to expectations, the dedicated space missions SWAS and Odin typically found only very small amounts of water vapour and essentially no O-2 in the dense star-forming interstellar medium. Aims. Only toward rho OphA did Odin detect a very weak line of O-2 at 119 GHz in a beam of size 10 arcmin. The line emission of related molecules changes on angular scales of the order of some tens of arcseconds, requiring a larger telescope aperture such as that of the Herschel Space Observatory to resolve the O-2 emission and pinpoint its origin. Methods. We use the Heterodyne Instrument for the Far Infrared (HIFI) aboard Herschel to obtain high resolution O-2 spectra toward selected positions in the rho Oph A core. These data are analysed using standard techniques for O2 excitation and compared to recent PDR-like chemical cloud models. Results. The N-J = 3(3)-1(2) line at 487.2 GHz is clearly detected toward all three observed positions in the rho Oph A core. In addition, an oversampled map of the 5(4)-3(4) transition at 773.8 GHz reveals the detection of the line in only half of the observed area. On the basis of their ratios, the temperature of the O-2 emitting gas appears to vary quite substantially, with warm gas (greater than or similar to 50 K) being adjacent to a much colder region, of temperatures lower than 30 K. Conclusions. The exploited models predict that the O-2 column densities are sensitive to the prevailing dust temperatures, but rather insensitive to the temperatures of the gas. In agreement with these models, the observationally determined O-2 column densities do not seem to depend strongly on the derived gas temperatures, but fall into the range N(O-2) = 3 to greater than or similar to 6 x 10(15) cm(-2). Beam-averaged O-2 abundances are about 5 x 10(-8) relative to H-2. Combining the HIFI data with earlier Odin observations yields a source size at 119 GHz in the range of 4 to 5 arcmin, encompassing the entire rho Oph A core. We speculate that one of the reasons for the generally very low detection rate of O-2 is the short period of time during which O-2 molecules are reasonably abundant in molecular clouds.

main cloud

interstellar hydrogen-peroxide

dust grains

c-i emission

ISM: abundances

satellite

oph cloud

ISM: individual objects: rho Oph

submillimeter observations

odin

photodissociation regions

dark-cloud

ISM: lines and bands

molecular

ISM: clouds

clouds

ISM: molecules

Författare

René Liseau

Chalmers, Rymd- och geovetenskap, Radioastronomi och astrofysik

P. F. Goldsmith

Jet Propulsion Laboratory, California Institute of Technology

B. Larsson

Stockholms universitet

L. Pagani

LERMA - Laboratoire d'Etudes du Rayonnement et de la Matiere en Astrophysique et Atmospheres

Per Bergman

Chalmers, Rymd- och geovetenskap, Onsala rymdobservatorium

J. Le Bourlot

LUTH - Laboratoire de l'Univers et de ses Theories

T. A. Bell

Centro de Astrobiologia (CAB)

A. O. Benz

Eidgenössische Technische Hochschule Zürich (ETH)

E. A. Bergin

University of Michigan

Per Bjerkeli

Chalmers, Rymd- och geovetenskap, Radioastronomi och astrofysik

John H Black

Chalmers, Rymd- och geovetenskap, Radioastronomi och astrofysik

S. Bruderer

Max-Planck-Gesellschaft

Eidgenössische Technische Hochschule Zürich (ETH)

P. Caselli

University of Leeds

E. Caux

Université de Toulouse

Jo-Hsin Chen

Jet Propulsion Laboratory, California Institute of Technology

M. de Luca

LUTH - Laboratoire de l'Univers et de ses Theories

P. Encrenaz

LERMA - Laboratoire d'Etudes du Rayonnement et de la Matiere en Astrophysique et Atmospheres

E. Falgarone

Centre national de la recherche scientifique (CNRS)

M. Gerin

Centre national de la recherche scientifique (CNRS)

J. R. Goicoechea

Centro de Astrobiologia (CAB)

Åke Hjalmarson

Chalmers, Rymd- och geovetenskap, Radioastronomi och astrofysik

D. J. Hollenbach

SETI Institute

Kay Justtanont

Chalmers, Rymd- och geovetenskap, Radioastronomi och astrofysik

M. J. Kaufman

San Jose State University

F. Le Petit

LUTH - Laboratoire de l'Univers et de ses Theories

D. Li

Chinese Academy of Sciences

California Institute of Technology (Caltech)

D. C. Lis

California Institute of Technology (Caltech)

G. J. Melnick

Harvard-Smithsonian Center for Astrophysics

Z. Nagy

Rijksuniversiteit Groningen

Netherlands Institute for Space Research (SRON)

Henrik Olofsson

Chalmers, Rymd- och geovetenskap, Onsala rymdobservatorium

G. Olofsson

Stockholms universitet

E. Roueff

LUTH - Laboratoire de l'Univers et de ses Theories

A. Sandqvist

Stockholms universitet

R. L. Snell

University of Massachusetts

F. F. S. van der Tak

Netherlands Institute for Space Research (SRON)

Rijksuniversiteit Groningen

E. F. van Dishoeck

Universiteit Leiden

Max-Planck-Gesellschaft

C. Vastel

Université de Toulouse

Centre national de la recherche scientifique (CNRS)

S. Viti

University College London (UCL)

U. A. Yildiz

Universiteit Leiden

Astronomy and Astrophysics

0004-6361 (ISSN) 1432-0746 (eISSN)

Vol. 541 A73

Ämneskategorier

Astronomi, astrofysik och kosmologi

DOI

10.1051/0004-6361/201118575

Mer information

Senast uppdaterat

2018-10-02