Replica symmetry of the minimum matching
Artikel i vetenskaplig tidskrift, 2012

We establish the soundness of the replica symmetric ansatz introduced by M. Mezard and G. Parisi for the minimum matching problem in the pseudo-dimension d mean field model for d >= 1. The case d = 1 corresponds to the pi(2)/6-limit for the assignment problem proved by D. Aldous in 2001. We introduce a game-theoretical framework by which we establish the analogous limit also for d > 1.

zeta(2) limit

parisi

mean-field

equations

asymptotics

proof

weak-convergence

local

traveling-salesman problem

random assignment problem

spin-glasses

Författare

Johan Wästlund

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Annals of Mathematics

0003-486X (ISSN)

Vol. 175 1061-1091

Ämneskategorier

Matematik

DOI

10.4007/annals.2012.175.3.2