Spin-precession-assisted supercurrent in a superconducting quantum point contact coupled to a single-molecule magnet
Artikel i vetenskaplig tidskrift, 2012

The supercurrent through a quantum point contact coupled to a nanomagnet strongly depends on the dynamics of the nanomagnet's spin. We employ a fully microscopic model to calculate the transport properties of a junction coupled to a spin whose dynamics is modeled as Larmor precession brought about by an external magnetic field and find that the dynamics affects the charge and spin currents by inducing transitions between the continuum states outside the superconducting gap region and the Andreev levels. This redistribution of the quasiparticles leads to a nonequilibrium population of the Andreev levels and an enhancement of the supercurrent which is visible as a modified current-phase relation as well as a nonmonotonous critical current as function of temperature. The nonmonotonous behavior is accompanied by a corresponding change in spin-transfer torques acting on the precessing spin and leads to the possibility of using temperature as a means to tune the back-action on the spin.

Författare

Cecilia Holmqvist

Wolfgang Belzig

Mikael Fogelström

Chalmers, Mikroteknologi och nanovetenskap (MC2), Tillämpad kvantfysik

Physical Review B - Condensed Matter and Materials Physics

1098-0121 (ISSN)

Vol. 86 5 054519-

Styrkeområden

Nanovetenskap och nanoteknik

Fundament

Grundläggande vetenskaper

Ämneskategorier

Den kondenserade materiens fysik

DOI

10.1103/PhysRevB.86.054519

Mer information

Skapat

2017-10-07