Livsmedel består av många olika komponenter såsom proteiner, kolhydrater, fett, vitaminer och vatten. Blandningar av proteiner och polysackarider (biopolymerer) delar gärna upp sig i separata faser, vilka är berikade av den ena komponenten och utarmade på den andra, ett fenomen som kallas för fasseparation. Fasseparation av biopolymerblandningar i kombination med gelbildning används idag i livsmedelsindustrin i produkter såsom lågfettprodukter. Fasseparationsprocessen och hur denna kan styras är till stor del känt i bulk. Däremot vet man mindre om hur denna påverkas inuti begränsande geometrier - vilka påträffas i komplexa strukturer som livsmedel. Forskningen i denna avhandling har fokuserat på att undersöka hur blandningar av biopolymerer påverkas då de stängs in i väldefinierade geometrier, vilka till största delen har utgjorts av mikrometerstora droppar. Resultaten visar tydligt att begränsande geometrier har stor påverkan på strukturutvecklingen och den slutliga mikrostrukturen samt att det är möjligt att kontrollera den med hög precision. Vidare har ny metodik för att producera droppar med reproducerbar struktur utvecklats. De erhållna resultaten skulle kunna användas för att skapa material med funktionella egenskaper. Genom att utnyttja hur biopolymererna organiserar sig själva skulle man kunna skapa kapslar inifrån, där strukturen kan skräddarsys, vilka skulle i framtiden kunna användas för kontrollerad frisättning av aktiva ämnen såsom vitaminer eller läkemedel.
Food consists of several components such as proteins, carbohydrates, fats, vitamins and water. Blends of proteins and polysaccharides (biopolymers) often separate into different phases, which are enriched in one component and poor in the other, a phenomenon that is called phase separation.
In the food industry, phase separation of biopolymer mixtures is used in low fat products among others. The mechanisms for phase separation and how to control it are to large extent known in bulk. However, little is known about the effects on it within small, restricted geometries – which is found in complex structures such as food.
The research in this thesis have focused on exploring the effects on biopolymer mixtures confined in defined geometries, which to large extent were constituted by microdroplets. The results presented show that the volume had a marked impact on the both structural evolution and the final microstructure of the mixtures and that it was possible to control these processes with high precision. Furthermore, a new methodology to produce reproducible microstructures within droplets of micrometer sizes was developed.
The results from this research could be used to create materials with functional properties. By utilizing the biopolymer’s ability to self-organize could be used within capsules. In the future, such capsules could potentially be used in applications for controlled release of active substances such as vitamins or pharmaceuticals.