Advanced Materials for Rechargeable Lithium Batteries
Doktorsavhandling, 2012

Lithium rechargeable batteries have gained much attention in the pursuit for alternative energy sources because of advantages such as high energy density and high electric potential. In addition, the development of low-cost materials has been of interest to reduce the cost of batteries, especially those destined for transportation applications such as electric (EVs) or hybrid-electric vehicles (HEVs). At the same time, safety is a growing concern together with increasing environmental requirements. Moreover, research on light and flexible batteries has also been intensive, motivated by their potential applications in minute electronic systems. The development of new materials is a key to meet the challenges faced by battery technology. An ionic liquid-based polymer electrolyte could reduce the risk of explosion with non-flammability and high thermal stability. The use of LiMPO4 cathodes contributes with high thermal stability as a result of the covalent bond between metal and oxygen. Organic electrodes provide flexibility and may facilitate recycling of rechargeable lithium batteries. In this study, these materials have been employed for ultra-safe, flexible, green and high-rate-capability lithium batteries. Raman, XPS, DSC, and dielectric spectroscopy were used to investigate their physical properties, and the electrochemical performance of the ionic liquid-based polymer electrolytes are explored in combination with some LiMPO4 cathodes. The ion coordination, ionic conductivity, oxidation stability, dissolution of electrode material, and electrochemical properties were investigated. A new nano-fibrous organic radical polymer [(poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA)]   electrode, a new organic cathode material 2,3,6,7,10,11-hexamethoxytriphenylene (HMTP) containing methoxy functional group (CH3O) and Py14TFSI-based polymer electrolyte to overcome the drawback of organic electrode materials such as high amount of carbon and dissolution of active materials has also been investigated.

Rechargeable lithium battery

rate capability

Organic electrode

cycle stability.

Ionic liquid-based polymer electrolyte

electrochemical stability

Fasrummet, MC2
Opponent: Torbjörn Gustafsson

Författare

Jae-Kwang Kim

Chalmers, Teknisk fysik, Kondenserade materiens fysik

2,3,6,7,10,11-Hexamethoxytriphenylene (HMTP): A new organic cathode material for lithium batteries

Electrochemistry Communications,; Vol. 21(2012)p. 50-53

Artikel i vetenskaplig tidskrift

Improving the stability of an organic battery with an ionic liquid-based plymer electrolyte

RSC Advances,; Vol. 2(2012)p. 9795-9797

Artikel i vetenskaplig tidskrift

Towards flexible secondary lithium batteries: polypyrrole-LiFePO4 thin electrodes with polymer electrolytes

Journal of Materials Chemistry,; Vol. 22(2012)p. 15045-15049

Artikel i vetenskaplig tidskrift

An Imidazolium based ionic liquid electrolyte for lithium batteries

Journal of Power Sources,; Vol. 195(2010)p. 7639-7643

Artikel i vetenskaplig tidskrift

Highly porous LiMnPO4 in combination with an ionic liquid-based polymer gel electrolyte for lithium batteries

Electrochemistry Communications,; Vol. 13(2011)p. 1105-1108

Artikel i vetenskaplig tidskrift

Nano-fibrous polymer films for organic rechargeable batteries

Journal of Materials Chemistry A,; Vol. 1(2013)p. 2426-2430

Artikel i vetenskaplig tidskrift

Utvecklingen av nya material är en nyckel för att möta de utmaningar som batteriteknik. En jonisk vätska-polymer elektrolyt kan minska risken för explosion med icke-brännbarhet och hög termisk stabilitet. Användningen av LiMPO4 katoder bidrar med hög termisk stabilitet som ett resultat av den kovalenta bindningen mellan metall och syre. Organiska elektroder ger flexibilitet och kan underlätta återvinning av uppladdningsbara litiumbatterier. I denna studie har dessa material använts för ultra-säker, flexibel, grön och hög ränta-kapacitet litiumbatterier. Raman, XPS, DSC och dielektrisk spektroskopi användes för att undersöka deras fysikaliska egenskaper, och den elektrokemiska prestandan av de joniska vätska-baserade polymera elektrolyter utforskas i kombination med vissa LiMPO4 katoder. Jonen samordning, har jonisk ledningsförmåga, oxidationsstabilitet, upplösning av elektrodmaterial, och elektrokemiska egenskaper undersöktes. En ny nano-fibrös organisk radikal polymer [(poly (2,2,6,6-tetramethylpiperidinyloxy-4-yl-metakrylat) (PTMA)]   elektrod, ett nytt organiskt katodmaterial 2,3,6,7,10,11-hexamethoxytriphenylene (HMTP) innehåller metoxi funktionell grupp (CH3O) och Py14TFSI-polymer elektrolyt för att övervinna nackdelen med organiska elektrodmaterial såsom hög mängd kol och upplösning av aktiva material har också undersökts.

The development of new materials is a key to meet the challenges faced by battery technology. An ionic liquid-based polymer electrolyte could reduce the risk of explosion with non-flammability and high thermal stability. The use of LiMPO4 cathodes contributes with high thermal stability as a result of the covalent bond between metal and oxygen. Organic electrodes provide flexibility and may facilitate recycling of rechargeable lithium batteries. In this study, these materials have been employed for ultra-safe, flexible, green and high-rate-capability lithium batteries. Raman, XPS, DSC, and dielectric spectroscopy were used to investigate their physical properties, and the electrochemical performance of the ionic liquid-based polymer electrolytes are explored in combination with some LiMPO4 cathodes. The ion coordination, ionic conductivity, oxidation stability, dissolution of electrode material, and electrochemical properties were investigated. A new nano-fibrous organic radical polymer [(poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA)]   electrode, a new organic cathode material 2,3,6,7,10,11-hexamethoxytriphenylene (HMTP) containing methoxy functional group (CH3O) and Py14TFSI-based polymer electrolyte to overcome the drawback of organic electrode materials such as high amount of carbon and dissolution of active materials has also been investigated.

Styrkeområden

Energi

Materialvetenskap

Ämneskategorier

Annan naturvetenskap

ISBN

978-91-7385-792-5

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 7055

Fasrummet, MC2

Opponent: Torbjörn Gustafsson