Solute transport on the sub 100 ms scale across the lipid bilayer membrane of individual proteoliposomes
Artikel i vetenskaplig tidskrift, 2012

Screening assays designed to probe ligand and drug-candidate regulation of membrane proteins responsible for ion-translocation across the cell membrane are wide spread, while efficient means to screen membrane-protein facilitated transport of uncharged solutes are sparse. We report on a microfluidic-based system to monitor transport of uncharged solutes across the membrane of multiple (>100) individually resolved surface-immobilized liposomes. This was accomplished by rapidly switching (<10 ms) the solution above dye-containing liposomes immobilized on the floor of a microfluidic channel. With liposomes encapsulating the pH-sensitive dye carboxyfluorescein (CF), internal changes in pH induced by transport of a weak acid (acetic acid) could be measured at time scales down to 25 ms. The applicability of the set up to study biological transport reactions was demonstrated by examining the osmotic water permeability of human aquaporin (AQP5) reconstituted in proteoliposomes. In this case, the rate of osmotic-induced volume changes of individual proteoliposomes was time resolved by imaging the self quenching of encapsulated calcein in response to an osmotic gradient. Single-liposome analysis of both pure and AQP5-containing liposomes revealed a relatively large heterogeneity in osmotic permeability. Still, in the case of AQP5-containing liposomes, the single liposome data suggest that the membrane-protein incorporation efficiency depends on liposome size, with higher incorporation efficiency for larger liposomes. The benefit of low sample consumption and automated liquid handling is discussed in terms of pharmaceutical screening applications.

Författare

Gabriel Ohlsson

Chalmers, Teknisk fysik, Biologisk fysik

Seyed Tabaei

Chalmers, Teknisk fysik, Biologisk fysik

J. P. Beech

Lunds universitet

Jan Kvassman

Lunds universitet

Urban Johanson

Lunds universitet

Per Kjellbom

Lunds universitet

J. O. Tegenfeldt

Göteborgs universitet

Fredrik Höök

Chalmers, Teknisk fysik, Biologisk fysik

Lab on a Chip - Miniaturisation for Chemistry and Biology

1473-0197 (ISSN) 1473-0189 (eISSN)

Vol. 12 22 4635-4643

Styrkeområden

Nanovetenskap och nanoteknik

Livsvetenskaper och teknik (2010-2018)

Ämneskategorier

Biologiska vetenskaper

Nanoteknik

DOI

10.1039/c2lc40518k

Mer information

Senast uppdaterat

2018-03-02