Analytical Solutions for the Pencil-Beam Equation with Energy Loss and Straggling
Artikel i vetenskaplig tidskrift, 2012

In this article, we derive equations approximating the Boltzmann equation for charged particle transport under the continuous slowing down assumption. The objective is to obtain analytical expressions that approximate the solution to the Boltzmann equation. The analytical expressions found are based on the Fermi-Eyges solution, but include correction factors to account for energy loss and spread. Numerical tests are also performed to investigate the validity of the approximations.

analytical solution

Fermi-Eyges equation

transport

energy loss straggling

Författare

Tobias Gebäck

Chalmers, Matematiska vetenskaper, Matematik

SuMo Biomaterials

Göteborgs universitet

Mohammad Asadzadeh

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Transport Theory and Statistical Physics

0041-1450 (ISSN) 1532-2424 (eISSN)

Vol. 41 5-6 325-336

Ämneskategorier

Matematik

Fysik

DOI

10.1080/00411450.2012.671207