Canonical heights for plane polynomial maps of small topological degree
Artikel i vetenskaplig tidskrift, 2012

We study canonical heights for plane polynomial mappings of small topological degree. In particular, we prove that for points of canonical height zero, the arithmetic degree is bounded by the topological degree and hence strictly smaller than the first dynamical degree. The proof uses the existence, proved by Favre and the first author, of certain compactifications of the plane adapted to the dynamics.

Canonical height

polynomial mappings

dynamical degrees

arithmetic dynamics

compactifications

Författare

Mattias Jonsson

Elizabeth Wulcan

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

Mathematical Research Letters

1073-2780 (ISSN) 1945001x (eISSN)

Vol. 19 6 1207-1217

Ämneskategorier (SSIF 2011)

Matematik

Fundament

Grundläggande vetenskaper

DOI

10.4310/MRL.2012.v19.n6.a3

Mer information

Skapat

2017-10-07