Probabilistic analysis for a multiple depot vehicle routing problem
Artikel i vetenskaplig tidskrift, 2007

We give a probabilistic analysis of the Multiple Depot Vehicle Routing Problem (MDVRP) where k depots and it customers are given by i.i.d. random variables in [0, 1](d), d >= 2. The tour length divided by n((d-1)/d) tends to a integral([0,1]d) f(x)((d-1)/d) dx, where,f is the density of the absolutely continuous part of the law of the random variables giving the depots and customers and where the constant alpha depends on the number of depots. If k = o(n), alpha is the constant of the TSP problem. For k = lambda n, lambda > 0, we prove lower and upper bounds on alpha, which decrease as fast as (1 + lambda)(-1/d).

vehicle routing

probabilistic analysis

MDVRP

Författare

A. Baltz

Christian-Albrechts-Universität zu Kiel

Devdatt Dubhashi

Chalmers, Data- och informationsteknik

A. Srivastav

Christian-Albrechts-Universität zu Kiel

Libertad Tansini

Chalmers, Data- och informationsteknik

S. Werth

Christian-Albrechts-Universität zu Kiel

Random Structures and Algorithms

1042-9832 (ISSN) 10982418 (eISSN)

Vol. 30 1-2 206-225

Ämneskategorier

Datavetenskap (datalogi)

DOI

10.1002/rsa.20156

Mer information

Senast uppdaterat

2018-03-29