Collective Lie-Poisson integrators on R3
Preprint, 2013

We develop Lie--Poisson integrators for general Hamiltonian systems on $\R^{3}$ equipped with the rigid body bracket. The method uses symplectic realisation of $\R^{3}$ on $T^{*}\R^{2}$ and application of symplectic Runge--Kutta schemes. As a side product, we obtain simple symplectic integrators for general Hamiltonian systems on the sphere $S^{2}$.

Författare

Klas Modin

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Styrkeområden

Informations- och kommunikationsteknik

Ämneskategorier

Beräkningsmatematik

Geometri

Fundament

Grundläggande vetenskaper

Mer information

Skapat

2017-10-08