Model Based Capability Assessment of an Automated Eddy Current Inspection Procedure on Flat Surfaces
Artikel i vetenskaplig tidskrift, 2013

The probability of detection (POD) of a well-controlled, automated eddy current (EC) procedure is evaluated in a numerical model and compared with experiments. The procedure is applied in laboratory environment with a single absolute probe which is positioned for raster scan over flat surfaces containing fatigue cracks. The variability of the signal amplitude, due to small fatigue cracks in the Titanium alloy Ti-6Al-4 V, is expected to mainly originate from crack characteristics and the index distance of the raster scan. The POD model is based on the signal versus crack size ( versus a) result. The presented procedure provides a well-defined basis for a comparison between a simulated and an experimentally based POD assessment. Finite element analysis is used to model the EC method. A simplified fatigue crack model is first introduced and evaluated experimentally. Numerical computations are then used to build the corresponding model-based POD curve which shows good agreement with the experimental result. The model-based POD curve is generated both by means of a parametric and a nonparametric approach. Differences between model-based and experimental POD are discussed as well as the delta POD approach using transfer functions.

model-based POD

probability of detection (POD)

eddy current

Författare

Anders Rosell

Chalmers, Material- och tillverkningsteknik, Avancerad oförstörande provning

Gert Persson

Chalmers, Material- och tillverkningsteknik, Avancerad oförstörande provning

Research in Nondestructive Evaluation

0934-9847 (ISSN) 1432-2110 (eISSN)

Vol. 24 154-176

Ämneskategorier

Annan materialteknik

DOI

10.1080/09349847.2013.779401