Recent progress on lower hybrid current drive and implications for ITER
Artikel i vetenskaplig tidskrift, 2013

The sustainment of steady-state plasmas in tokamaks requires efficient current drive systems. Lower hybrid current drive is currently the most efficient method to generate a continuous additional off-axis toroidal plasma current and to reduce the poloidal flux consumption during the plasma current ramp-up phase. The operation of the Tore Supra ITER-like lower hybrid (LH) launcher has demonstrated the capability to couple LH power at ITER-like power densities with very low reflected power during long pulses. In addition, the installation of eight 700 kW/CW klystrons at the LH transmitter has allowed increasing the total LH power in long-pulse scenarios. However, in order to achieve pure stationary LH-sustained plasmas, some R&D is needed to increase the reliability of all the systems and codes, from radio-frequency (RF) sources to plasma scenario prediction. The CEA/IRFM is addressing some of these issues by leading a R&D programme towards an ITER LH system and by the validation of an integrated LH modelling suite of codes. In 2011, the RF design of a mode converter was validated at a low power. A 500 kW/5 s RF window is currently under manufacture and will be tested at a high power in 2012 in collaboration with the National Fusion Research Institute. All of this work aims to reduce the operational risks associated with the ITER steady-state operations.

Författare

J. Hillairet

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

Annika Ekedahl

Chalmers, Teknisk fysik, Nukleär teknik

M. Goniche

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

Y. S. Bae

National Fusion Research Institute

J. Achard

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

A. Armitano

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

B. Beckett

ITER

J. Belo

Instituto Superior Tecnico

G. Berger-By

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

J. M. Bernard

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

E. Corbel

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

L. Delpech

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

J. Decker

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

R. J. Dumont

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

D. Guilhem

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

G. T. Hoang

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

F. Kazarian

ITER

H. J. Kim

National Fusion Research Institute

X. Litaudon

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

R. Magne

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

L. Marfisi

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

P. Mollard

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

W. Namkung

Pohang University of Science and Technology

Emelie Nilsson

Chalmers, Teknisk fysik, Nukleär teknik

S. Park

National Fusion Research Institute

Y. Peysson

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

M. Preynas

Max Planck-institutet

P. K. Sharma

Institute for Plasma Research India

M. Prou

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

Nuclear Fusion

0029-5515 (ISSN)

Vol. 53 7

Ämneskategorier

Subatomär fysik

DOI

10.1088/0029-5515/53/7/073004