Using a manganese ore as catalyst for upgrading biomass derived gas
Paper i proceeding, 2013

Secondary catalytic tar cleaning has been evidenced as a promising technology for upgrading gas derived from biomass gasification. When applying this technology downstream a biomass gasifier, the tar fraction in the raw gas can be reduced and the content of hydrogen can be increased. In this work, experiments have been conducted in a Chemical-Looping-Reforming (CLR) reactor. The present reactor system features a circulating fluidized bed as the reformer section, which offers a higher gas-solids contact time than a bubbling bed configuration previously tested. All experiments were performed using raw gas from the Chalmers 2-4 MWth biomass gasifier as feedstock to the reactor system. The catalyst inventory consisted of a natural manganese ore and its activity was evaluated at three different temperature levels - 800oC, 850oC and 880oC - and with an oxygen content of 2.2%, corresponding to a theoretical air-to-fuel ratio of 0.06. Experimental results showed that the manganese ore exhibits catalytic activity with respect to tar conversion and a tar reduction of as much as 72% was achieved at 880oC. Moreover, this material showed high activity towards hydrogen production.


Jelena Maric

Chalmers, Energi och miljö

Nicolas Berguerand

Chalmers, Energi och miljö, Energiteknik

Fredrik Lind

Chalmers, Energi och miljö, Energiteknik

Martin Seemann

Chalmers, Energi och miljö, Energiteknik

Henrik Thunman

Chalmers, Energi och miljö, Energiteknik

International Conference on Polygeneration Strategies, Wien




Kemiska processer

Annan naturresursteknik

Mer information