Fractional Fokker-Planck Equation vs Tsallis’ Statistical Mechanics
Paper i proceeding, 2013

In this paper we present a study of anomalous diffusion using a Fokker-Planck description with fractional velocity derivatives. The distribution functions are found using numerical means for varying degree of fractionality observing the transition from a Gaussian distribution to a L´evy distribution. The statistical properties of the distribution functions are assessed by a generalized expectation measure and entropy in terms of Tsallis statistical mechanics. We find that the ratio of the generalized entropy and expectation is increasing with decreasing fractionality towards the well known so-called sub-diffusive domain, indicating a self-organising behavior.

Författare

Johan Anderson

Chalmers, Teknisk fysik, Nukleär teknik

Sara Moradi

Chalmers, Teknisk fysik, Nukleär teknik

Hans Nordman

Chalmers, Rymd- och geovetenskap, Plasmafysik och fusionsenergi

Chalmers, Rymd- och geovetenskap

Festival-de-Theorie

Vol. 7 4-

Ämneskategorier

Fysik

Fusion, plasma och rymdfysik

Styrkeområden

Energi

Fundament

Grundläggande vetenskaper

Mer information

Skapat

2017-10-08