A Lattice Boltzmann Method for the Advection-Diffusion Equation with Neumann Boundary Conditions
Artikel i vetenskaplig tidskrift, 2014

In this paper, we study a lattice Boltzmann method for the advection-diffusion equation with Neumann boundary conditions on general boundaries. A novel mass conservative scheme is introduced for implementing such boundary con- ditions, and is analyzed both theoretically and numerically. Second order convergence is predicted by the theoretical analysis, and numerical investigations show that the convergence is at or close to the predicted rate. The nu- merical investigations include time-dependent problems and a steady-state diffusion problem for computation of effective diffusion coefficients.

Lattice Boltzmann

diffusion

advection-diffusion

Neumann boundary condition

Författare

Tobias Gebäck

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

SuMo Biomaterials

Alexey Geynts

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Communications in Computational Physics

1815-2406 (ISSN) 1991-7120 (eISSN)

Vol. 15 2 487-505

Ämneskategorier

Beräkningsmatematik

Annan fysik

Matematisk analys

Styrkeområden

Materialvetenskap

DOI

10.4208/cicp.161112.230713a