Generalized Mathieu Moonshine
Artikel i vetenskaplig tidskrift, 2013

The Mathieu twisted twining genera, i.e., the analogues of Norton's generalized Moonshine functions, are constructed for the elliptic genus of K3. It is shown that they satisfy the expected consistency conditions, and that their behaviour under modular transformations is controlled by a 3-cocycle in H-3(M-24, U(1)), just as for the case of holomorphic orbifolds. This suggests that a holomorphic VOA may be underlying Mathieu Moonshine.

Algebras

Orbifolds

Finite-Group

BPS States

Group M-24

Modular-Invariance

K3 Surfaces

N=4 Dyons

Symmetry

Författare

Matthias R. Gaberdiel

Eidgenössische Technische Hochschule Zürich (ETH)

Daniel Persson

Chalmers, Teknisk fysik, Matematisk fysik

Henrik Ronellenfitsch

Max Planck-institutet

R. Volpato

Max Planck-institutet

Communications in Number Theory and Physics

1931-4523 (ISSN) 1931-4531 (eISSN)

Vol. 7 145-223

Ämneskategorier

Matematik

Fysik

DOI

10.4310/CNTP.2013.v7.n1.a5