Silicon isotopic abundance toward evolved stars and its application for presolar grains
Artikel i vetenskaplig tidskrift, 2013

Aims: Galactic chemical evolution (GCE) is important for understanding the composition of the present-day interstellar medium (ISM) and of our solar system. In this paper, we aim to track the GCE by using the 29Si/30Si ratios in evolved stars and tentatively relate this to presolar grain composition. Methods: We used the APEX telescope to detect thermal SiO isotopologue emission toward four oxygen-rich M-type stars. Together with the data retrieved from the Herschel science archive and from the literature, we were able to obtain the 29Si/30Si ratios for a total of 15 evolved stars inferred from their optically thin 29SiO and 30SiO emission. These stars cover a range of masses and ages, and because they do not significantly alter 29Si/30Si during their lifetimes, they provide excellent probes of the ISM metallicity (or 29Si/30Si ratio) as a function of time. Results: The 29Si/30Si ratios inferred from the thermal SiO emission tend to be lower toward low-mass oxygen-rich stars (e.g., down to about unity for W Hya), and close to an interstellar or solar value of 1.5 for the higher-mass carbon star IRC+10216 and two red supergiants. There is a tentative correlation between the 29Si/30Si ratios and the mass-loss rates of evolved stars, where we take the mass-loss rate as a proxy for the initial stellar mass or current stellar age. This is consistent with the different abundance ratios found in presolar grains. Before the formation of the Sun, the presolar grains indicate that the bulk of presolar grains already had 29Si/30Si ratios of about 1.5, which is also the ratio we found for the objects younger than the Sun, such as VY CMa and IRC+10216. However, we found that older objects (up to possibly 10 Gyr old) in our sample trace a previous, lower 29Si/30Si value of about 1. Material with this isotopic ratio is present in two subclasses of presolar grains, providing independent evidence of the lower ratio. Therefore, the 29Si/30Si ratio derived from the SiO emission of evolved stars is a useful diagnostic tool for the study of the GCE and presolar grains.

ISM: abundances

ISM: molecules

stars: late-type

submillimeter: ISM

Författare

T.-C. Peng

European Southern Observatory (ESO)

E. M. Humphreys

European Southern Observatory (ESO)

L. Testi

Osservatorio Astrofisico di Arcetri

Excellence Cluster Universe

European Southern Observatory (ESO)

A. Baudry

Laboratoire d'Astrophysique de Bordeaux

M. Wittkowski

European Southern Observatory (ESO)

M.G. Rawlings

National Radio Astronomy Observatory

I. de Gregorio-Monsalvo

Atacama Large Millimeter-submillimeter Array

European Southern Observatory (ESO)

Wouter Vlemmings

Chalmers, Rymd- och geovetenskap, Radioastronomi och astrofysik

Lars-Åke Nyman

Atacama Large Millimeter-submillimeter Array

M.D. Gray

University of Manchester

C. De Breuck

European Southern Observatory (ESO)

Astronomy and Astrophysics

0004-6361 (ISSN) 1432-0746 (eISSN)

Vol. 559 8-14 L8

Ämneskategorier

Astronomi, astrofysik och kosmologi

Fundament

Grundläggande vetenskaper

Infrastruktur

Onsala rymdobservatorium

DOI

10.1051/0004-6361/201322466