A new pentagon identity for the tetrahedron index
Artikel i vetenskaplig tidskrift, 2013

Recently Kashaev, Luo and Vartanov, using the reduction from a four-dimensional superconformal index to a three-dimensional partition function, found a pentagon identity for a special combination of hyperbolic Gamma functions. Following their idea we have obtained a new pentagon identity for a certain combination of so-called tetrahedron indices arising from the equality of superconformal indices of dual three-dimensional N=2 supersymmetric theories and give a mathematical proof of it.

Nonperturbative Effects

Supersymmetry and Duality

Supersymmetric gauge theory

Författare

Ilmar Gahramanov

Azerbaijan National Academy of Sciences

Humboldt-Universität zu Berlin

Hjalmar Rosengren

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

Journal of High Energy Physics

1126-6708 (ISSN) 1029-8479 (eISSN)

1-11

Ämneskategorier

Matematik

Fysik

Fundament

Grundläggande vetenskaper

DOI

10.1007/JHEP11(2013)128