Efficient methods for near-optimal sequential decision making under uncertainty
Kapitel i bok, 2010

This chapter discusses decision making under uncertainty. More specifically, it offers an overview of efficient Bayesian and distribution-free algorithms for making near-optimal sequential decisions under uncertainty about the environment. Due to the uncertainty, such algorithms must not only learn from their interaction with the environment but also perform as well as possible while learning is taking place. © 2010 Springer-Verlag Berlin Heidelberg.

Författare

Christos Dimitrakakis

Chalmers, Data- och informationsteknik, Datavetenskap

Styrkeområden

Informations- och kommunikationsteknik

Ämneskategorier

Data- och informationsvetenskap

Sannolikhetsteori och statistik

DOI

10.1007/978-3-642-11688-9_5

ISBN

9783642116872