A posteriori error estimates for Fredholm integral equations of the first kind
Paper i proceeding, 2013

We consider an adaptive finite element method for the solution of a Fredholm integral equation of the first kind and derive a posteriori error estimates both in the Tikhonov functional and in the regularized solution of this functional. We apply nonlinear results obtained in Beilina et al., (Journal of Mathematical Sciences, 167, 279–325, 2010), Beilina and Klibanov, (Inverse Problems, 26, 045012, 2010), Beilina et al., (Journal of Mathematical Sciences, 172, 449–476, 2011), Beilina and Klibanov, ( Inverse Problems, 26, 125009, 2010), Klibanov et al., (Inverse and Ill-Posed Problems), 19, 83–105, 2011) for the case of the linear bounded operator. We formulate an adaptive algorithm and present experimental verification of our adaptive technique on the backscattered data measured in microtomography.

Författare

N. Koshev

Penza State University of Architecture and Construction

Larisa Beilina

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

Applied Inverse Problems, Springer Proceedings in Mathematics & Statistics: 1st Annual Workshop on Inverse Problems

2194-1017 (eISSN)

Vol. 48 75-93

Ämneskategorier

Matematik

Beräkningsmatematik

DOI

10.1007/978-1-4614-7816-4_5

ISBN

978-1-4614-7815-7

Mer information

Skapat

2017-10-08