Enabling direct H2O2 production through rational electrocatalyst design
Artikel i vetenskaplig tidskrift, 2013

Future generations require more efficient and localized processes for energy conversion and chemical synthesis. The continuous on-site production of hydrogen peroxide would provide an attractive alternative to the present state-of-the-art, which is based on the complex anthraquinone process. The electrochemical reduction of oxygen to hydrogen peroxide is a particularly promising means of achieving this aim. However, it would require active, selective and stable materials to catalyse the reaction. Although progress has been made in this respect, further improvements through the development of new electrocatalysts are needed. Using density functional theory calculations, we identify Pt-Hg as a promising candidate. Electrochemical measurements on Pt-Hg nanoparticles show more than an order of magnitude improvement in mass activity, that is, Ag-1 precious metal, for H2O2 production, over the best performing catalysts in the literature.

oxidation

electroreduction

fuel-cell

carbon

catalysts

hydrogen-peroxide

platinum

electrode

disk

oxygen reduction reaction

metal-surfaces

Författare

Samira Siahrostami

Danmarks Tekniske Universitet (DTU)

A. Verdaguer-Casadevall

Danmarks Tekniske Universitet (DTU)

M. Karamad

Danmarks Tekniske Universitet (DTU)

D. Deiana

Danmarks Tekniske Universitet (DTU)

Paolo Malacrida

Danmarks Tekniske Universitet (DTU)

Björn Wickman

Chalmers, Teknisk fysik, Kemisk fysik

M. Escudero-Escribano

Danmarks Tekniske Universitet (DTU)

Elisa A. Paoli

Danmarks Tekniske Universitet (DTU)

Rasmus Frydendal

Danmarks Tekniske Universitet (DTU)

T. W. Hansen

Danmarks Tekniske Universitet (DTU)

I. Chorkendorff

Danmarks Tekniske Universitet (DTU)

Ifan E. L. Stephens

Danmarks Tekniske Universitet (DTU)

J. Rossmeisl

Danmarks Tekniske Universitet (DTU)

Nature Materials

1476-1122 (ISSN) 1476-4660 (eISSN)

Vol. 12 12 1137-1143

Ämneskategorier

Materialteknik

DOI

10.1038/nmat3795

Mer information

Senast uppdaterat

2018-02-28