High-throughput screening for industrial enzyme production hosts by droplet microfluidics
Artikel i vetenskaplig tidskrift, 2014

A high-throughput method for single cell screening by microfluidic droplet sorting is applied to a whole-genome mutated yeast cell library yielding improved production hosts of secreted industrial enzymes. The sorting method is validated by enriching a yeast strain 14 times based on its a-amylase production, close to the theoretical maximum enrichment. Furthermore, a 105 member yeast cell library is screened yielding a clone with a more than 2-fold increase in a-amylase production. The increase in enzyme production results from an improvement of the cellular functions of the production host in contrast to previous droplet-based directed evolution that has focused on improving enzyme protein structure. In the workflow presented, enzyme producing single cells are encapsulated in 20 pL droplets with a fluorogenic reporter substrate. The coupling of a desired phenotype (secreted enzyme concentration) with the genotype (contained in the cell) inside a droplet enables selection of single cells with improved enzyme production capacity by droplet sorting. The platform has a throughput over 300 times higher than that of the current industry standard, an automated microtiter plate screening system. At the same time, reagent consumption for a screening experiment is decreased a million fold, greatly reducing the costs of evolutionary engineering of production strains.

DIRECTED EVOLUTION

MICRODROPLETS

SACCHAROMYCES-CEREVISIAE

Författare

S. L. Sjostrom

Kungliga Tekniska Högskolan (KTH)

Y. Bai

Kungliga Tekniska Högskolan (KTH)

Mingtao Huang

Chalmers, Kemi- och bioteknik, Livsvetenskaper

Zihe Liu

Chalmers, Kemi- och bioteknik, Livsvetenskaper

Jens B Nielsen

Chalmers, Kemi- och bioteknik, Livsvetenskaper

H. N. Joensson

Kungliga Tekniska Högskolan (KTH)

H. A. Svahn

Kungliga Tekniska Högskolan (KTH)

Lab on a Chip - Miniaturisation for Chemistry and Biology

1473-0197 (ISSN) 1473-0189 (eISSN)

Vol. 14 4 806-813

Ämneskategorier

Industriell bioteknik

Kemiteknik

Styrkeområden

Livsvetenskaper och teknik (2010-2018)

DOI

10.1039/c3lc51202a

Mer information

Senast uppdaterat

2018-02-26