A General System for Learning and Reasoning in Symbolic Domains
Paper i proceeding, 2014

We present the system O that operates in arbitrary symbolic domains, including arithmetic, logic, and grammar. O can start from scratch and learn the general laws of a domain from examples. The main learning mechanism is a formalization of Occam’s razor. Learning is facilitated by working within a cognitive model of bounded rationality. Computational complexity is thereby dramatically reduced, while preserving human-level performance. As illustration, we describe the learning process by which O learns elementary arithmetic. In the beginning, O knows nothing about the syntax or laws of arithmetic; by the end, it has constructed a theory enabling it to solve previously unseen problems such as “what is 67 ∗ 8?” and “which number comes next in the sequence 8,11, 14?”.

Domain-independent agent

Occam’s razor

bounded rationality.

Författare

Claes Strannegård

Göteborgs universitet

Chalmers, Tillämpad informationsteknologi, Kognition och kommunikation

Abdul Rahim Nizamani

Göteborgs universitet

Ulf Persson

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

03029743 (ISSN) 16113349 (eISSN)

Vol. 8598 LNAI 174-185
978-3-319-09274-4 (ISBN)

Ämneskategorier

Filosofi

Filosofi, etik och religion

DOI

10.1007/978-3-319-09274-4_17

ISBN

978-3-319-09274-4

Mer information

Senast uppdaterat

2024-10-18