Osteogenic response of human mesenchymal stem cells to well-defined nanoscale topography in vitro
Artikel i vetenskaplig tidskrift, 2014

Background: Patterning medical devices at the nanoscale level enables the manipulation of cell behavior and tissue regeneration, with topographic features recognized as playing a significant role in the osseointegration of implantable devices. Methods: In this study, we assessed the ability of titanium-coated hemisphere-like topographic nanostructures of different sizes (approximately 50, 100, and 200 nm) to influence the morphology, proliferation, and osteogenic differentiation of human mesenchymal stem cells (hMSCs). Results: We found that the proliferation and osteogenic differentiation of hMSCs was influenced by the size of the underlying structures, suggesting that size variations in topographic features at the nanoscale level, independently of chemistry, can be exploited to control hMSC behavior in a size-dependent fashion. Conclusion: Our studies demonstrate that colloidal lithography, in combination with coating technologies, can be exploited to investigate the cell response to well defined nanoscale topography and to develop next-generation surfaces that guide tissue regeneration and promote implant integration.

cell proliferation

osteogenic differentiation

mineralization

human mesenchymal stem cells

implantable materials

colloidal lithography

nanotopography

Författare

Giuseppe Maria de Peppo

Göteborgs universitet

Hossein Agheli

Göteborgs universitet

Camilla Karlsson

Göteborgs universitet

Karin Ekström

Göteborgs universitet

H. Brisby

Göteborgs universitet

Maria Lennerås

Göteborgs universitet

Stefan Gustafsson

SuMo Biomaterials

Chalmers, Teknisk fysik, Eva Olsson Group

Peter Sjövall

Chalmers, Teknisk fysik, Biologisk fysik

Anna Johansson

Göteborgs universitet

Eva Olsson

Chalmers, Teknisk fysik, Eva Olsson Group

Jukka Lausmaa

BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy

SP Sveriges Tekniska Forskningsinstitut AB

Peter Thomsen

Göteborgs universitet

Sarunas Petronis

BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy

SP Sveriges Tekniska Forskningsinstitut AB

International journal of nanomedicine

1176-9114 (ISSN) 1178-2013 (eISSN)

Vol. 9 1 2499-2515

Ämneskategorier

Biomaterialvetenskap

DOI

10.2147/ijn.s58805

Mer information

Senast uppdaterat

2023-03-21