Weak type (1,1) of some operators for the Laplacian with drift
Artikel i vetenskaplig tidskrift, 2016
Let $\Delta_{v} = \Delta + 2v\cdot \nabla $ be the
Laplacian with drift in $\R^n$. Here $v$ is any nonzero vector.
Then $\Delta_{v}$ has a self-adjoint extension
in $L^2(\mu)$ for the measure $d\mu(x) = e^{2 \langle v, x \rangle}dx$.
Clearly, this measure has
exponential volume growth with respect to the Euclidean metric.
We prove the weak type
(1,1) boundedness of the corresponding Riesz transforms and the heat
maximal operator, with respect to $\mu$. These operators were already known
to be bounded on $L^p(\mu),\;1
Författare
Hong-Quan Li
Peter Sjögren
Göteborgs universitet
Chalmers, Matematiska vetenskaper, Matematik
Yurong Wu
Mathematische Zeitschrift
0025-5874 (ISSN) 14321823 (eISSN)
Vol. 282 3 623-633Fundament
Grundläggande vetenskaper
Ämneskategorier
Matematisk analys
DOI
10.1007/s00209-015-1555-z