Convergence of finite volume scheme for a three dimensional Poisson's equation.
Artikel i vetenskaplig tidskrift, 2014

We construct and analyze a finite volume scheme for numerical solution of a three-dimensional Poisson equation. We derive optimal convergence rates in the discrete H1 norm and sub-optimal convergence in the maximum norm, where we use the maximal available regularity of the exact solution and minimal smoothness requirement on the source term. The theoretical results are justified through implementing some canonical examples in 3D. Bibliography: 26 titles. Illustrations: 4 figures.

Författare

Mohammad Asadzadeh

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

Krzysztof Bartoszek

Uppsala universitet

Journal of Mathematical Sciences

1072-3374 (ISSN) 15738795 (eISSN)

Vol. 202 2 130-153

Ämneskategorier

Matematik

Fundament

Grundläggande vetenskaper

DOI

10.1007/s10958-014-2038-1

Mer information

Senast uppdaterat

2018-02-28