Discontinuous Galerkin method for an integro-differential equation modeling dynamic fractional order viscoelasticity
Artikel i vetenskaplig tidskrift, 2015

An integro-differential equation, modeling dynamic fractional order viscoelasticity, with a Mittag-Leffler type convolution kernel is considered. A discontinuous Galerkin method, based on piecewise constant polynomials, is formulated for temporal semidiscretization of the problem. Stability estimates of the discrete problem are proved, that are used to prove optimal order a priori error estimates. The theory is illustrated by a numerical example.

Integro-differential equation

Fractional order viscoelasticity

Discontinuous Galerkin method

A priori estimate

Weakly singular kernel

Stability

Författare

Stig Larsson

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

Milena Racheva

Technical University of Gabrovo

Fardin Saedpanah

University of Kurdistan

Computer Methods in Applied Mechanics and Engineering

0045-7825 (ISSN)

Vol. 283 196-209

Ämneskategorier

Beräkningsmatematik

Fundament

Grundläggande vetenskaper

DOI

10.1016/j.cma.2014.09.018