Presence or absence of analytic structure in maximal ideal spaces
Artikel i vetenskaplig tidskrift, 2016

We study extensions of Wermer's maximality theorem to several complex variables. We exhibit various smoothly embedded manifolds in complex Euclidean space whose hulls are non-trivial but contain no analytic disks. We answer a question posed by Lee Stout concerning the existence of analytic structure for a uniform algebra whose maximal ideal space is a manifold.

Författare

Alexander Izzo

Bowling Green State University

Håkan Samuelsson Kalm

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Erlend Fornaess Wold

Universitetet i Oslo

Mathematische Annalen

0025-5831 (ISSN) 1432-1807 (eISSN)

Vol. 366 459-478

Ämneskategorier

Matematik

Geometri

Matematisk analys

DOI

10.1007/s00208-015-1330-9