Evolution reveals a glutathione-dependent mechanism of 3-hydroxypropionic acid tolerance
Artikel i vetenskaplig tidskrift, 2014

Biologically produced 3-hydroxypropionic acid (3HP) is a potential source for sustainable acrylates and can also find direct use as monomer in the production of biodegradable polymers. For industrial scale production there is a need for robust cell factories tolerant to high concentration of 3HP, preferably at low pH. Through adaptive laboratory evolution we selected S. cerevisiae strains with improved tolerance to 3HP at pH 3.5. Genome sequencing followed by functional analysis identified the causal mutation in SFA1 gene encoding S-(hyclroxymerhyl)glutathione dehydrogenase. Based on our findings, we propose that 3HP toxicity is mediated by 3-hydroxypropionic aldehyde (reuterin ) and that glutathione-dependent reactions are used for reuterin detoxification. The identified molecular response to 3HP and reuterin may well be a general mechanism for handling resistance to organic acid and aldehydes by living cells. (C) 2014 International Metabolic Engineering Society Published by Elsevier Inc. On behalf of International Metabolic Engineering Society. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/)

Adaptive laboratory evolution


3-hydroxypropionic acid

3-hydroxypropionic aldehyde (reuterin)

Saccharomyces cerevisiae


K. R. Kildegaard

Danmarks Tekniske Universitet (DTU)

B. M. Hallstrom

Kungliga Tekniska Högskolan (KTH)

T. H. Blicher

Köpenhamns universitet

N. Sonnenschein

Danmarks Tekniske Universitet (DTU)

N. B. Jensen

Danmarks Tekniske Universitet (DTU)

S. Sherstyk

Danmarks Tekniske Universitet (DTU)

S. J. Harrison

Danmarks Tekniske Universitet (DTU)

J. Maury

Danmarks Tekniske Universitet (DTU)

M. J. Herrgard

Danmarks Tekniske Universitet (DTU)

A. S. Juncker

Danmarks Tekniske Universitet (DTU)

J. Forster

Danmarks Tekniske Universitet (DTU)

Jens B Nielsen

Chalmers, Kemi- och bioteknik, Livsvetenskaper

I. Borodina

Danmarks Tekniske Universitet (DTU)

Metabolic Engineering

1096-7176 (ISSN) 1096-7184 (eISSN)

Vol. 26 57-66


Industriell bioteknik

Bioinformatik och systembiologi


Livsvetenskaper och teknik (2010-2018)



Mer information

Senast uppdaterat