Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering
Artikel i vetenskaplig tidskrift, 2014

Due to its amazing ability to manipulate light at the nanoscale, plasmonics has become one of the most interesting topics in the field of light-matter interaction. As a promising application of plasmonics, surface-enhanced Raman scattering (SERS) has been widely used in scientific investigations and material analysis. The large enhanced Raman signals are mainly caused by the extremely enhanced electromagnetic field that results from localized surface plasmon polaritons. Recently, a novel SERS technology called remote SERS has been reported, combining both localized surface plasmon polaritons and propagating surface plasmon polaritons (PSPPs, or called plasmonic waveguide), which may be found in prominent applications in special circumstances compared to traditional local SERS. In this article, we review the mechanism of remote SERS and its development since it was first reported in 2009. Various remote metal systems based on plasmonic waveguides, such as nanoparticle-nanowire systems, single nanowire systems, crossed nanowire systems and nanowire dimer systems, are introduced, and recent novel applications, such as sensors, plasmon-driven surface-catalyzed reactions and Raman optical activity, are also presented. Furthermore, studies of remote SERS in dielectric and organic systems based on dielectric waveguides remind us that this useful technology has additional, tremendous application prospects that have not been realized in metal systems.

plasmonic waveguide

surface-enhanced Raman scattering

remote-excitation

nanowire

Författare

Y. Z. Huang

Chinese Academy of Sciences

Chongqing University

Yurui Fang

Chalmers, Teknisk fysik, Bionanofotonik

Z. L. Zhang

Friedrich-Schiller-Universität Jena

Institut fur Photonische Technologien

L. Zhu

National Center for Nanoscience and Technology Beijing

M. T. Sun

Chongqing University

Chinese Academy of Sciences

Light: Science and Applications

2047-7538 (eISSN)

Vol. 3 Art. no. e199-

Ämneskategorier

Nanoteknik

DOI

10.1038/lsa.2014.80

Mer information

Senast uppdaterat

2018-10-02